Security & Identity Fundamentals
Security is an uncompromising feature of Google Cloud Platform services, and GCP has developed specific tools for ensuring safety and identity across your projects. In this fundamental-level quest, you will get hands-on practice with GCP’s Identity and Access Management (IAM) service, which is the go-to for managing user and virtual machine accounts. You will get experience with network security by provisioning VPCs and VPNs, and learn what tools are available for security threat and data loss protections.
Stackdriver
In this fundamental-level quest, you will learn the ins and outs of Stackdriver: an important GCP service for generating insights into applications’ health. Stackdriver provides a wealth of information in application monitoring, report logging, and diagnoses. The labs in this quest will give you hands-on practice with Stackdriver, and will teach you how to monitor virtual machines, generate logs and alerts, and create custom metrics for application data.
Integrating Machine Learning APIs
In this hands-on lab explore the Vision, Speech-to-Text, Translation, and Natural Language APIs and use the APIs to analyse audio recordings and map them to relevant images.
Machine Learning with TensorFlow
In this lab you will learn how to use Google Cloud Machine Learning and Tensorflow to develop and evaluate prediction models using machine learning.
Big Data and Machine Learning Fundamentals (v1.1)
This one-day instructor-led course introduces participants to the big data capabilities of Google Cloud Platform.
Introduction to Amazon Machine Learning
In this lab, you will generate an Amazon Machine Learning model, test and shape the ML model and then try real-time predictions. To successfully complete this lab, you should be familiar with the Amazon S3 service. You should understand the concepts of bucket and object, and how to perform put and get operations on objects in an S3 bucket using the S3 console or AWS CLI. You should have at least taken the lab “Introduction to Amazon Simple Storage Service (S3)”. For the lab to function as written, please DO NOT change the auto assigned region.
Machine Learning with Spark on Google Cloud Dataproc
In this lab you will learn how to implement logistic regression using a machine learning library for Apache Spark running on a Google Cloud Dataproc cluster to develop a model for data from a multivariable dataset.
Applied Machine Learning: Building Models for an Amazon Use Case
Applied Machine Learning: Building Models for an Amazon Use Case
Distributed Machine Learning with Google Cloud ML
Learn the process for partitioning a data set into two separate parts: a training set to develop a model, and a test set to evaluate the accuracy of the model and then independently evaluate predictive models in a repeatable manner.
Scikit-learn Model Serving with Online Prediction Using Cloud Machine Learning Engine
In this lab you will build a simple scikit-learn model, upload the model to Cloud Machine Learning Engine, and make predictions against the model.