Building Demand Forecasting with BigQuery ML




Explore the NYC Citi Bike Trips dataset

Cleaned training data

Training a Model

Evaluate the time series model

Make Predictions using the model

Building Demand Forecasting with BigQuery ML

1 ora 5 crediti


Google Cloud Self-Paced Labs


BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage, or needing a database administrator.

BigQuery Machine Learning (BQML) is a feature in BigQuery where data analysts can create, train, evaluate, and predict with machine learning models with minimal coding. Watch this video to learn more about BigQuery ML.

In this lab, you will learn how to build a time series model to forecast the demand of multiple products using BigQuery ML. Using the NYC Citi Bike Trips public dataset, learn how to use historical data to forecast demand in the next 30 days. Imagine the bikes are retail items for sale, and the bike stations are stores.

Watch this video to understand some example use cases for demand forecasting.


In this lab, you will learn to perform the following tasks:

  • Use BigQuery to find public datasets.

  • Query and explore the public NYC Citi Bike Trips dataset.

  • Create a training and evaluation dataset to be used for batch prediction.

  • Create a forecasting (time series) model in BQML.

  • Evaluate the performance of your machine learning model.

Crea un account Qwiklabs per leggere il resto del lab e tanto altro ancora.

  • Acquisisci accesso temporaneo a Google Cloud Console.
  • Oltre 200 lab dal livello iniziale a quelli più avanzati.
  • Corsi brevi per apprendere secondo i tuoi ritmi.
Crea un account per iniziare questo lab