menu
arrow_back

AI Platform: Qwik Start

AI Platform: Qwik Start

1 个小时 1 个积分

GSP076

Google Cloud Self-Paced Labs

Overview

This lab will give you hands-on practice with TensorFlow 2.x model training, both locally and on AI Platform. After training, you will learn how to deploy your model to AI Platform for serving (prediction). You'll train your model to predict income category of a person using the United States Census Income Dataset.

This lab gives you an introductory, end-to-end experience of training and prediction on AI Platform. The lab will use a census dataset to:

  • Create a TensorFlow 2.x training application and validate it locally.
  • Run your training job on a single worker instance in the cloud.
  • Deploy a model to support prediction.
  • Request an online prediction and see the response.

What you will build

The sample builds a classification model for predicting income category based on United States Census Income Dataset. The two income categories (also known as labels) are:

  • >50K — Greater than 50,000 dollars
  • <=50K — Less than or equal to 50,000 dollars

The sample defines the model using the Keras Sequential API. The sample defines the data transformations particular to the census dataset, then assigns these (potentially) transformed features to either the DNN or the linear portion of the model.

加入 Qwiklabs 即可阅读本实验的剩余内容…以及更多精彩内容!

  • 获取对“Google Cloud Console”的临时访问权限。
  • 200 多项实验,从入门级实验到高级实验,应有尽有。
  • 内容短小精悍,便于您按照自己的节奏进行学习。
加入以开始此实验
分数

—/100

Set up a Google Cloud Storage bucket

运行步骤

/ 20

Upload the data files to your Cloud Storage bucket

运行步骤

/ 20

Run a single-instance trainer in the cloud

运行步骤

/ 20

Create a Cloud ML Engine model

运行步骤

/ 20

Create a version v1 of your model

运行步骤

/ 20