arrow_back

Advanced ML: ML Infrastructure

share

Advanced ML: ML Infrastructure

5 hours Advanced universal_currency_alt 26 Credits
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, GCP has a tool for just about any machine learning job. In this advanced-level quest, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on GCP.

Complete this activity and earn a badge! Boost your cloud career by showing the world the skills you’ve developed.

  • Lab

    Scikit-learn Model Serving with Online Prediction Using AI Platform

    In this lab you will build a simple scikit-learn model, upload the model to AI Platform Prediction, and make predictions against the model.

  • Lab

    Distributed Machine Learning with Google Cloud ML

    Learn the process for partitioning a data set into two separate parts: a training set to develop a model, and a test set to evaluate the accuracy of the model and then independently evaluate predictive models in a repeatable manner.

  • Lab

    warning Real Time Machine Learning with Google Cloud ML

    Using Cloud DataProc running on a Hadoop cluster you will analyse a data set using Bayes Classification.

  • Lab

    Awwvision: Cloud Vision API from a Kubernetes Cluster

    This hands-on lab uses Kubernetes and Cloud Vision API to create an example of how to use the Vision API to classify (label) images from Reddit’s /r/aww subreddit and display the labelled results in a web app.

  • info
    Quest Info